来源:New Economist

朱云来、吴军万字对话:人工智能下一步  第1张

  本文为2024世界人工智能大会暨人工智能全球治理高级别会议“AI 规模新经济”--投融资主题论坛的讨论实录,由新经济学家智库整理,有删改,未经本文确认。

  本账号接受投稿,投稿邮箱:jingjixuejiaquan@126.com

  朱云来、吴军对话:人工智能下一步

  王曙光:尊敬的各位嘉宾,各位朋友,下午好,欢迎来参加中金公司的论坛,也很欢迎能够来参与我们这次讨论。(王曙光为中金投资银行业务负责人)

  我作为本次高端对话的主持人,首先向各位介绍一下今天的两位嘉宾,一位是坐在我左侧的朱云来教授,朱云来教授以前也是中金公司的CEO,现在是清华大学的访问教授,然后线上还有一位吴军博士。吴军博士好。

  吴军:大家好,主持人好,很高兴跟大家在线上(交流)。

  王曙光:吴军博士是人工智能方面的专家,也出了很多跨界的书籍,像浪潮之巅这些特别有名的这种科技的畅销书。特别感谢吴军博士在美国线上参加,此时已经是美国的深夜,但是中国人工智能的这种热度,相信能够使得吴军博士能够打起精神参与我们本次的高端论坛。

  在开正式开始论坛讨论之前,说点题外话,我刚才听了彭博(彭文生)的报告,我觉得未来有一个职业大概率会被替掉,就是像我这样的论坛主持人。我觉得未来我可能是少见的一些还真能够现场参加的主持人,因为我说主持人一般在干嘛?

  第一,搜寻社会上的热点问题,其实这一步工作只需要用ChatGPT或者是用中国的这些大模型,你输入几个字,现在社会上最关心AI,尤其是比如说经济界或者投资界最关心有哪些问题,一页纸出来了,然后这个问题有了。未来像中金公司的那位,我们的智能员工,他就可以直接在那,用比我更好听的语音和嗓音,然后来问嘉宾们问题。

  第二个就是问问题,问完问题之后基本上作为主持人要总结归纳一下嘉宾说的什么话。这个刚才彭博士的报告也讲得很清楚,包括刚才萨金特教授也讲得很清楚,归纳并复述,这个是人工智能最基本的一些功能,这个东西也被替代了。

  第三,那就是引导嘉宾们讨论,甚至是争辩。这也是人工智能特别擅长的领域。所以我说今天有可能是人工主持人在上海人工智能大会上的最后的演出,所以希望明年人工智能的进步能够使得像我们这样的人就不要出现了。因为我说像我们现在还需要人工主持的主持词对吧?这些其实都是对社会资源的浪费,明年希望咱们的主持能够变得更加人工智能一些。

  我觉得第一个问题还是先请吴军老师来帮我们分享,因为实际上人工智能技术经历了从简单规则到深度学习和神经网络的快速发展,在这个过程中 AI技术已经广泛应用到各个领域,如今在图像识别、自然语言处理和预测分析方面已经显示出了强大的能力。

  近年来,包括在自动驾驶、医疗诊断、金融、教育、创作也都有很多的应用,还是首先想请吴军博士和朱教授分享一下,你们作为行业达人是怎么看待AI技术的演变及未来应用的这种真实的潜力?先有请吴军博士。

  吴军:我谈谈我的看法。人工智能到发展到今天基本上是第四波的浪潮或者是第四波的热捧。

  第一波其实是从有计算机开始,到60年代初。刚才主持人讲了说用一些简单的规则来做人工智能,当时人类的想法很简单,就是人怎么思维的,就是我们要怎么做人工智能,当然后来证明这条道路行不通的。

  这就如同人类发明飞机的时候,其实它不是学鸟在飞行,不是在振动翅膀,人发明的飞机的翅膀是不振动的。人类搞清楚了空气动力学的一些原理,在这个基础上他又发明了飞机,这就能做的比较好了。但是整个第一代人工智能时代,人类完全不知道机器来实现人工智能该怎么做。

  到了上世纪70年代其实是美国的一个教授,后来是IBM的一个负责人,就是贾里尼克教授提出语言模型,这才开始了数据驱动的人工智能,但是由于数据量不够,计算量也不够,一开始其实成果不是很能让人信服。一直有争议,就是说按照这条路能不能走下去,有一些问题能够得到解决,有些问题解决不了,中间也起起伏伏,这就是第二波的浪潮,起来又下去了。他的那些同事,后来其实除了他自己还在做人工智能,剩下来人都去了一家非常有名的,中金大概每个人都知道的一家公司,叫做文艺复兴技术公司,都挣着大钱了,用人工智能的技术去解决语言的问题、图像的问题,都没解决好,最后做股票预测挣到大钱了,当然这是题外话。这是第二波热潮起来又冷下去。

朱云来、吴军万字对话:人工智能下一步  第2张

  在这个时候又出现了第三波,今天的人工神经网络用的这个,但是也是受限于规模,受限于这个数据,也没做好,所以在2000年的时候,大家都不好意思说自己是做人工智能的,因为你说这个一定找不着工作,大家说自己做机器学习的,就是这糊弄事了。

  这时候就出了那几个人,就是本杰欧、杨立昆和新的他们几个人搞人工神经网络,把很基础的算法给搞出来了,但是没成果,而且他们甚至也不知道为什么要做这些东西,觉得这些算法很好,非常好,非常有意义,说有什么用没人知道。

朱云来、吴军万字对话:人工智能下一步  第3张

  直到后来Google这些公司有了大量的数据,有了大量的计算能力,然后实现了深度的人工神经网络,这才开始其实也就是从2010年开始做,2016年取得初步成果,后来又提出了今天我们的transformer这一套,把人工智能问题然后变成一个深度学习的问题这样一套方法。

  那么在这个基础上有了今天ChatGPT,大家从2016年其实人工智能开始热了,因为当时阿尔法狗赢了李世石,在中国有了很多的应用,主要是人脸识别,在世界上无人驾驶现在也很靓丽,那么然后有了ChatGPT解决了语言学的很多问题,今天人工智能才热起来。

朱云来、吴军万字对话:人工智能下一步  第4张

  实际上从它的发展的时间来看,以及它的成果来看,也就是发展了60年,大概它的成果集中在最近的十年。所以人工智能其实还是处在一个相对早期的阶段,它做了一些事情,但是和它未来的潜力相比发挥的还非常小。

  在未来的时间里,我们刚才讲了这4个阶段,今天这个阶段其实是其中的一个阶段,如果大家觉得说这一个阶段能解决什么问题,我觉得过分乐观了,还有好多问题其实没有解决。

  刚才我听了前面的几个报告,比如说是否让人工智能来模拟人,其实这种想法一直有,但其实到现在为止解决的都很不好,非常的粗浅,所以人工智能还有很大的潜力,有很长的路要走。今天做的在很多领域其实超过了人已经很不错了。

  刚才我也就主持人一开始一个自谦的说法,说是不是将来就没有主持人了。其实人工智能他擅长回答问题,不擅长提问题。世界上不光是人工智能,世界上最难的事情是提问题。

  我问过很多最优秀大学教授,世界一流大学大教授,也跟国内一些一流大学的教授们讨论过,最后大家有一个共识,像MIT或者斯坦福这些大教授或者能得诺贝尔奖的这些教授,他们跟我们国内的清华或者复旦这种一流的教授比有什么差别,或者差距在哪里?差距在于提问题,不在于解决问题,也就是说国内一流教授解决问题的能力不比美国这种顶级的世界顶级的教授差,但是能够提出好问题是非常困难的事。所以我觉得在今后像我这样回答问题的人可能就不存在了。提出好问题的人永远是很稀缺的,先跟大家分享这些。

  王曙光:谢谢吴军教授,突然间使得我们在评价资深员工的KPI上多了一条,只有能够提出好问题的老板才是好的老板,现在看来是应该这么有一个向上评价的额外的KPI,我把这个问题再转给朱教授,请朱教授做分享。

  朱云来:很高兴能参加讨论,吴军博士是业内著名的专家,他写了可能得有几十本书,我记得当时有个什么叫《浪潮之巅》,后面一系列的,我这个充其量算一个业余爱好者,不过是一个非常热情的追随者。

  其实粗算一下历史,刚才吴军也讲了大概有4代,算一下,如果我们把图灵当时他破解密码应该也算是人工智能了,对吧?从那个时代到现在,1945年二战结束到今天2024年差不多也是80年,80年4代,一代20年,其实跟我们人类的迭代也挺有点像。但是浪起浪伏,一次都是给你带来特别大的一个希望,如果你去翻一翻历史上他们当时宣称离人工智能有多近,你会感到非常的激动,但最后他又过去了,好像远远没有达到这个目标,但是过一段时间突然又崛起了。

朱云来、吴军万字对话:人工智能下一步  第5张

  怎么看这个问题?我觉得这一次,第四次,特别是去年ChatGPT的崛起,应该是说给了我们一个前所未有的一个崭新的感受,又让我们重新燃起了对人工智能的期望和好奇。

  我觉得它确实是一个非常大的进步,其实是显示出来我们人类可能逐渐的在找到这个感觉。从最早的计算机的设计利用变成了更多的去模仿人类的能力,到现在我们好像找到了一点感觉,其实可能每一次我们都是想的是一个非常完整的、高水平的综合人的能力,但其实从经济学的角度,其实你不需要完成所有最高的,你能把大量的、基础的能够非常有效的推广以后,他可能已经能让社会经济大大的前进一步。

  我比较一下这一次有可能一个潜力是说达到一个工业革命级的是吧?比方说过去有蒸汽机革命,这算是第一次工业革命。它其实只是系统的潜在的能源的供应,以及能源的成本降低,所以它实际上就是推动了全世界的经济发展。第二轮典型的是电力,还有好多各种专业性的革命。这一次我为什么觉得就是说人工智能有了一个新的特点?

  在过去你想想,从计算机发明到后来的一系列的应用,计算机概念,说到底它就是一个芯片,它可以接受指令来完成各种具体的操作。但现在慢慢的我们把它越来越系统化了以后,我发现这一轮的 AI如果说跟以前的各种各样的计算机的应用相比的话,它好像多了一个特点,它是能够自己来执行,它是以完成某一个任务为核心。

  过去只是说你让我开关,你让我开这个我开这个,你让我开那个我开那个,然后剩下的事情还是你人类做的,但其实现在我们已经总结到一定的程度,就是说我可以给他一个指令完成一个功能,甚至说是指令都不用给了,我想要达到一个什么目标,然后你计算机自己去组织你的一些指令,变成了完成的任务。

  所以这一次的话,我们又发现比方说通过像GPT这样的,他用了所谓大量的语料,这个语料它其实本质上应该还是神经网络的概念。神经网络实际上是说这里边的参数,原来我对这个参数理解可能有点不太准确,我也是在一路在学习。

  原来担心,你看GPT第一代上亿的参数,接着第二代就10亿,然后第三代百亿千亿,到第四代万亿级的参数,我当时觉得这玩意有点太快,这么一个大概3年多4代这个参数就上一个量级,我说这个是不是有点反摩尔定律?摩尔定律是说每过一年我成本降低一半,你这个是说每过一年成本上升10倍,上升了一个量级,是不是有点这个问题?后来我发现不是,这个参数它本质的意义是说我们的神经网络的复杂性,它其实是我们的权重系数,最近新出来的好多 GPT开源版的,那就变成什么7B了13B了,7B也就是70亿,比原来到什么万亿千亿的水平其实小了很多了。

  所以可能是说你要用一个多复杂的神经网络系统来才能够去理解总结这个世界,可能我们现在也找到这个感觉了。

  另外一方面就是说,我们要认识的世界的对象,实际上就是我们的语料一个trillion还是多少个trillion,就是万亿,多少个万亿的要被认识的对象,这些逐渐的是在我们掌握之中了。

  但是现在的人工智能还是有一个本质上的问题,就是说它,不是有一句话叫做什么,一本正经的胡说八道。为啥?其实后来我看了一下,神经网络的本质,它的背后实际上它是在不断的概括归纳这个规律,其实刚才萨金特教授也提到,我们实际上是怎么兼容了一次,然后怎么去拍成MAC内审,所以它其实本质上还是一个模式识别,而且它识别了以后它就不分真伪了,普遍运用,所以它很一本正经,为啥?因为它都是一个计算机的算法模式出来的,所以他一本正经,然后胡说八道,实际上是什么?他可能90%都是对的,但是有10%也是错的。但它也把那10%的错的也当成对的照用,所以也就变成好像有点信口开河了,或者我说他这种学习方法,其实这是对世界的一个学习,他有点生搬硬套,但是至少我们现在发现,因为我看到GPT回答的速度和他回答的合理程度,这是惊人,我都是奇怪这机器怎么能做到,但是后来我想想从方法论,从科技框架来